Arco Elétrico

Riscos térmicos do arco elétrico - NR 10

Introdução

Os arcos elétricos podem provocar intensa radiação térmica, calor, vapores, gases, barulho em nível prejudicial, ondas de pressão, vaporização de componentes adjacentes e ignição de materiais inflamáveis entre outros. As queimaduras provocadas por calor oriundo de arco voltaico é um risco constante no dia a dia do eletricista. Nesse caso uma quantidade extrema de energia é liberada a uma temperatura alta, porém em um curtíssimo espaço de tempo, em geral décimos ou centésimos de segundo.

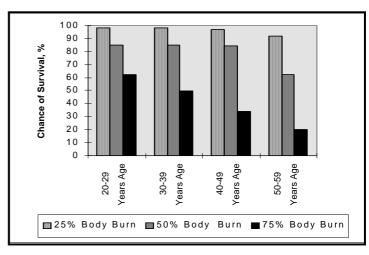
Por que nós somos interessados em energia incidente?

- 1. Energia incidente de arcos elétricos causa queimaduras na pele humana.
- 2. As queimaduras são um perigo ameaçador à vida.
- 3. Esse risco pode ser consideravelmente aumentado especialmente se a vestimenta do eletricista se inflamar

Limites de energia incidente

Essa energia incidente, radiante e convectiva, por unidade de área recebida em uma superfície com distância específica do arco elétrico, é mensurada em unidades de caloria por centímetro quadrado (cal/cm².) O valor máximo de energia radiante que a pele humana pode suportar durante um segundo sem sofrer queimadura de segundo grau é de 1,2 cal/cm² sendo esse valor considerado como limiar para queimadura de segundo grau na pele humana.

Teste de energia incidente


Para se efetuar testes de performance de arco trifásico utiliza-se um calorímetro de cobre para medir elevação de temperatura a várias distâncias.

Os dados de elevação de temperatura são convertidos em energia incidente e associados ao critério para queimadura de 2º grau (1,2 cal/cm²)

Como informação 1cal/cm² equivalente à energia produzida pela chama de um isqueiro de cigarro em um segundo

Chance de sobrevivência

O quadro ao lado demonstra a chance de sobrevivência de uma pessoa conforme percentual de queimadura sofrido em seu corpo levando em consideração sua faixa etária.

Proteção

O tecido utilizado na confecção da vestimenta deve resistir ao valor de performance térmica do arco (ATPV) sem que essa energia incidente exceda o limiar no lado protegido ou na camada interna (quando confeccionada com múltiplas camadas).

Também não pode sofrer o "break open", ou seja, apresentar abertura na camada interna superior à ½ (meia) polegada quadrada em área ou rachadura superior a 1 (uma) polegada em comprimento.

Atendendo a nova NR-10, para proteger o eletricista contra queimaduras causadas por calor oriundo de arco voltaico a *JOBE LUV* criou a linha "V ARC SAFETY" que representa uma evolução tecnológica na confecção de vestimentas destinadas a esse tipo de protecão.

As vestimentas são confeccionadas com os tecidos especiais **Banox**®, **Banwear**® ou **Thermex**® em quantidade de camadas variando conforme o nível de proteção requerido

Como poderemos estimar a energia incidente gerada por um arco elétrico?

Não é possível mensurar a energia gerada por um arco elétrico real, uma vez que não sabemos quando o mesmo ocorrerá, porém através de cálculos previstos na NFPA 70E podemos, com base em algumas informações estimar o máximo de energia incidente em um determinado ponto de um circuito caso ocorra um arco elétrico. O NFPA 70E reconheceu a formula teórica de Ralph Lee, publicada pelo IEEE para determinar a distancia segura entre o operador e o ponto de ocorrência do arco ou seja a distancia limite para que não aconteça a queimadura de segundo grau na pele humana.

$$D = (2,65 * MVA * t)^{\frac{1}{2}}$$

Onde:

D = distancia em pés

MVA = potencia de curto circuito

t = tempo do flash

Os estudos de A.M Stoll e M. A. Chianta concluiu que o máximo de energia radiante que a pele humana poderia suportar durante um segundo sem sofrer queimadura de segundo grau seria 1,2 cal/cm² passou -se então a considerar esse valor como limiar para queimadura de segundo grau e assim sendo podemos introduzir a variável calor na formula de Ralph Lee e obteremos a seguinte formula:

$$E_{MB} = 793 * KV * KA * {}_{t}A / D_{B}^{2}$$

Onde:

E_{MB} = Energia máxima incidente, cal/cm2

KV = Tensão em Kilo Volts

KA = Corrente de curto circuito em kilo Amperes

_t A = Tempo do arco em segundos

D_B = Distancia do operador (em polegadas)

Para baixas voltagens o NFPA propõe duas formas distintas sendo uma especifica para arco em painéis, caixas cúbicas (cubic box) de 20" e outra para arcos em aberto (open air)

Arco em caixa (cubic box 20") \rightarrow $E_{MB} = 1038,7 D_B^{-1.4738} + A [0,0093 F^2 - 0,3453 F + 5,9675]$

Arco em aberto (open air) \rightarrow $E_{MB}= 5271D_B^{-1,9593}$ _t A [0,0016 F²- 0,0076 F+ 0,8938]

onde:

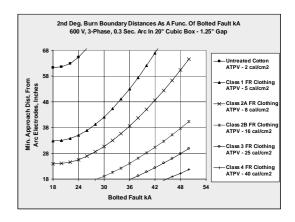
E_{MB} = Energia máxima incidente, cal/cm2

D_B = Distância de eletrodos, polegadas (DB>18)

F = Corrente de curto, kA

_tA = Duração do arco, (segundos)

ENTRE EM CONTATO COM NOSSO DEPARTAMENTO TÉCNICO PARA EFETUARMOS ESSE CALCULO DE ENERGIA INCIDENTE



Como fazemos para especificar a vestimenta adequada?

- 1. Calcule a energia incidente do arco por exposições específicas
- 2. Determine caso de pior provável exposição para o trabalhador
- 3. Considere cada tarefa / trabalho específico
- 4. Considere níveis de energia variados ao longo do sistema elétrico
- 5. Escolha a roupa apropriada resistente à chama

Quadro estimativo de limite de aproximação:

Quadro ao lado mostra o limite de aproximação segura para um arco em painel trifásico a baixa tensão considerando um tempo de flash de 0,3 segundos.

Estimando a energia incidente

- Passo 1 → Determine a voltagem (fase-fase) do sistema.
- Passo 2 → Determine a corrente de curto circuito do sistema.
- Passo 3 → Determine o tempo do arco (flash) baseando no sistema de proteção elétrico.
- Passo 4 → Determine a distância mínima entre o corpo e o arco.
- Passo 5 → Selecione a equação adequada e calcule o máximo de energia incidente a distancia mínima de aproximação do arco.
- Passo 6A → Se a energia máxima incidente calculada for menor que 1,2 cal/cm², não será necessária a utilização de vestimentas para proteção contra queimaduras provenientes da energia incidente, porém pode ser necessária contra outros riscos relacionados ao arco.
- Passo 6B → Se a energia máxima incidente calculada for 1,2 cal/cm² ou maior, consulte a tabela de aplicação de vestimentas de proteção ou os dados informados pelo fabricante da vestimenta.
- Assegure que o limite ATPV ou BTE atribuído para a vestimenta selecionada seja superior ao valor da energia incidente calculada à distância de aproximação mínima.

Norma de vestimentas de proteção contra riscos de arcos elétricos

Classes propo de proteção	ostas para roupas	Sistema da vestimenta		Energia incidente estimada para início de queimadura de 2° grau
Energia incidente calculada cal/cm²	Classe da vestimenta	Descrição da vestimenta (n° de camadas)	Peso total oz/yd² → g/m² (todas camadas)	ATPV – Valor de performance térmica do arco ou BTE – Energia limite para "breakopen"
0-2	0	Algodão sem tratamento (1)	4,5 - 7 → 153 - 237	n/a
2-5	1	Calça e camisa FR (1)	4,5 - 8 → 153 - 271	5-7
5-8	2A	Roupa de baixo Calça e camisa FR (2)	9 - 12 → 305 - 407	8-18
5-16	2B	Roupa de baixo Calça e camisa FR (2)	10 - 14 → 339 - 475	16-22
8-25	3	Roupa de baixo Calça e camisa FR Macacão / Capa FR (3)	16 - 20 → 542 - 678	25-50
25-40	4	Roupa de baixo Calça e camisa FR Sobretudo duplo FR (4)	24 - 30 → 814 - 1017	40->60

Concluindo

- Efetuar o cálculo de energia incidente para todos os painéis da planta.
- Determinar a classe da roupa conforme a tabela de classe de vestimentas da NFPA 70E (Classe 1, 2, 3 ou 4)
- Atentar para que o limite ATPV da vestimenta seja superior ao valor obtido no calculo.
- Preencher a etiqueta informando qual o nível de energia incidente e qual a vestimenta recomendada para aquele painel especifico
- Orientar o eletricista para que somente efetue trabalho no painel se estiver usando uma vestimenta com nível igual ou superior ao informado na etiqueta.
- As vestimentas podem ser compostas por calça e camisa / paletó ou macacão ou capa, em conjunto com luva e capuz conforme o nível de proteção requerido.
- As capas, inclusive as de sobreposição somente podem ser utilizadas para trabalhos em pé e em situações de risco de arco acima da linha de cintura do usuário.

Vestimentas monocamadas

Tecidos	Gramatura	ATPV / BTE
Banox® 9,5oz	322 g/m²	9,3 cal/cm ²
Banox® 14,0oz	470 g/m²	14,2 cal/cm ²
Banwear® 7,0 oz	237 g/m²	8,5 cal/cm ²
Banwear® 9,0 oz	305 g/m ²	11,4 cal/cm ²
Thermex® 6,0 oz	204 g/m²	5,7 cal/cm ²
Thermex® 7,5 oz	254 g/m²	6,7 cal/cm ²

Vestimenta multicamadas

Modelos	Camadas	Gramaturas*	ATPV / BTE
VAS 30	2	542 a 644 g/m²	30 cal/cm ²
VAS 40	3	780 a 899 g/m²	40 cal/cm ²
VAS 50	4	949 a 1288 g/m²	50 cal/cm ²

^{*} as gramaturas variam conforme o tecido utilizado sempre atendendo ou excedendo as exigências do NFPA 70E.

Produtos

Item	Referência	Descrição		Item	Referência	Descrição
1	3039	Calca]	5	3041	Capuz c/ visor
2	3034	Camisa / Paletó		6	3047	Macacão
3	3038	Capa		7	3048	Luva
4	3033	Capuz (balaclava) → som	ente para us	o com ó	culos ou protetor	facial

ARC CALCULATOR

Empresa:	JOBE LUV Industria e Comercio Ltda
Endereço:	Av. 80-A, 599 Dist. Industrial - Rio Claro/SP
Contato:	Aureo Cesar / Depto. Técnico
Fone / Fax / E-mail:	(19) 3527-2220 / 3527-2202 / aureo@jobeluv.com.br

ORIENTAÇÃO PARA CÁLCULO:

ENERGIA MÁXIMA INCIDENTE

- 1. Digitar a tensão do circuito em kilovolts KV
- 2. Digitar a corrente de curto circuito em kiloamperes KA
 - 3. Digitar o tempo de duração do arco em segundos
- 4. Digitar a distância do operador em centimetros cm

<u>FÓRMULAS</u>

AT - Alta Tensão $E_{MB} = 793 * KV * KA *_t A / D_B^2$

BT (cb) - Baixa Tensão (cubic box 20")

 $E_{MB} = 1038,7 D_B^{-1.4738} + A [0,0093 F^2 - 0,3453 F + 5,9675]$

BT (oa) - Baixa Tensão (open air) E_{MB}= 5271 D_B-1,9593 _t A [0,0016 F² – 0,0076 F+ 0,8938]

tA = Duração do arco (seg.)

= Corrente de curto circuito (Icc) = Corrente de curto circuito (Icc)

= Distância (polegadas)

 $\mathsf{E}_{\mathsf{MB}} = \mathsf{Energia} \; \mathsf{incidente} \; (\mathsf{cal/cm}^2)$

kV = Tensão em kV

ঽ

ž	N° Local analisado	Tensão	Corrente	Distância	Tempo (seg)	BT (cb)	BT (oa)	AT	Vestimenta Indicada
		(K	(KA)	(cm)		cal/cm²	cal/cm ²	cal/cm ²	ATPV / BTE
_	exemplo 1	138,00 KV	25,0 KA	150 cm	0,10s			78,4	sob consulta
7	exemplo 2	13,80 KV	31,5 KA	100 cm	0,10	\		22,2	VAS 30
က	exemplo 3	0,44 KV	20,0 KA	50 cm	0,10	3.6	2,1	•	monocamada
4						1	1	•	não necessario
2							1	•	não necessario
ဖ			/			1	_'		não necessario
7							-		não necessario
∞							-		não necessario
6							-		não necessario
10							-		não necessario
11							-		não necessario
12							-		não necessario
13						-	-	•	não necessario
14						-	-	-	não necessario
15							-	•	não necessario
16						-	-	-	não necessario
17						-	-	-	não necessario
18						-	-	-	não necessario
19						-	-	-	não necessario
20						-	-	-	não necessario

Os resultados aqui apresentados foram calculados conforme NFPA 70E, com base nas informações fornecidos pelo interessado e são meramente informativos não configurando nenhuma responsabilidade técnica sobre os mesmos.

Para especificação das vestimentas os cálculos deverão ser elaborados por um profissional da área elétrica devidamente habilitado.